Plantation performance of chestnut hybrids and progenitors on reclaimed Appalachian surface mines

New For (Dordr). 2018;49(5):599-611. doi: 10.1007/s11056-018-9643-7. Epub 2018 Apr 12.

Abstract

Reclamation of surface mined sites to forests is a preferred post-mining land use option, but performance of planted trees on such sites is variable. American chestnut (Castanea dentata (Marsh.) Borkh.) is a threatened forest tree in the eastern USA that may become an important species option for mine reclamation. Chestnut restoration using backcross hybrids that incorporate blight resistance may be targeted to the Appalachian coal mining region, which corresponds closely with the species' native range. Thus, it is important to understand how chestnut hybrids perform relative to progenitors on reclamation sites to develop restoration prescriptions. Seeds of parents and three backcross generations of chestnut (100% American, 100% Chinese, and BC1F3, BC2F3, and BC3F2 hybrids) were planted into mine soils in West Virginia, USA with shelter treatments. Survival for all stock types was 44% after 8 years (American 39%, Chinese 77%, BC1F3 40%, BC2F3 28%, and BC3F2 35%). Height for all stock types was 33 cm after 8 years (American 28 cm, Chinese 67 cm, BC1F3 30 cm, BC2F3 21 cm, and BC3F2 20 cm). At another site a year later, seedlings of the chestnut stock types were planted into brown (pH 4.6) or gray sandstone (pH 6.3) mine soils and seedling survival across all stock types was 58% after 7 years. Chinese had the highest survival at 82%, while the others ranged from 38 to 66%. Height was 63 cm for all stock types after 7 years. More advanced backcross hybrids (BC2F3 and BC3F2) had the lowest vigor ratings at both sites after 7-8 years. Our results indicate that surface mines in Appalachia may provide a land base for planting blight-resistant chestnuts, although Chinese chestnut outperformed American chestnut and later generation backcross hybrids. As blight-resistant chestnuts establish and spread after planting, chestnut trees may become a component of the forest canopy again and possibly occupy its former niche, but their spread may alter future forest stand dynamics.

Keywords: Forestry reclamation approach; Mine soils; Post-mining land use; Reclamation; Reforestation; Revegetation.