Highly Productive Propane Dehydrogenation Catalyst Using Silica-Supported Ga-Pt Nanoparticles Generated from Single-Sites

J Am Chem Soc. 2018 Sep 19;140(37):11674-11679. doi: 10.1021/jacs.8b05378. Epub 2018 Sep 11.

Abstract

The development of more effective alkane dehydrogenation catalysts is a key technological challenge for the production of olefins from shale gas, an abundant source of light hydrocarbons. Surface organometallic chemistry provides an original approach to generate nanometric Ga-Pt bimetallic particles supported on partially dehydroxylated silica containing gallium single-sites, which displays high activity, selectivity, and stability in propane dehydrogenation. This catalyst was prepared via sequential grafting of a platinum precursor onto silica possessing site-isolated gallium sites followed by H2 reduction. Monitoring generation of the reduced species, Gaδ+Pt0/SiO2, via in situ X-ray absorption spectroscopy reveals formation of a Ga xPt (0.5 < x < 0.9) alloy with a fraction of gallium remaining as isolated sites. This bimetallic material exhibits catalytic performance that far surpasses each of the individual components and other reported Ga-Pt based catalysts; this is attributed to the highly dispersed Ga xPt alloyed structure on a support with low Brønsted acidity containing gallium single-sites.

Publication types

  • Research Support, Non-U.S. Gov't