Scaling Up Electronic Spin Qubits into a Three-Dimensional Metal-Organic Framework

J Am Chem Soc. 2018 Sep 26;140(38):12090-12101. doi: 10.1021/jacs.8b06733. Epub 2018 Sep 17.

Abstract

Practical implementation of highly coherent molecular spin qubits for challenging technological applications, such as quantum information processing or quantum sensing, requires precise organization of electronic qubit molecular components into extended frameworks. Realization of spatial control over qubit-qubit distances can be achieved by coordination chemistry approaches through an appropriate choice of the molecular building blocks. However, translating single qubit molecular building units into extended arrays does not guarantee a priori retention of long quantum coherence and spin-lattice relaxation times due to the introduced modifications over qubit-qubit reciprocal distances and molecular crystal lattice phonon structure. In this work, we report the preparation of a three-dimensional (3D) metal-organic framework (MOF) based on vanadyl qubits, [VO(TCPP-Zn2-bpy)] (TCPP = tetracarboxylphenylporphyrinate; bpy = 4,4'-bipyridyl) (1), and the investigation of how such structural modifications influence qubits' performances. This has been done through a multitechnique approach where the structure and properties of a representative molecular building block of formula [VO(TPP)] (TPP = tetraphenylporphyrinate) (2) have been compared with those of the 3D MOF 1. Pulsed electron paramagnetic resonance measurements on magnetically diluted samples in titanyl isostructural analogues revealed that coherence times are retained almost unchanged for 1 with respect to 2 up to room temperature, while the temperature dependence of the spin-lattice relaxation time revealed insights into the role of low-energy vibrations, detected through terahertz spectroscopy, on the spin dynamics.

Publication types

  • Research Support, Non-U.S. Gov't