Eco-friendly flame retardant nanocrystalline cellulose prepared via silylation

Nanotechnology. 2018 Nov 9;29(45):455702. doi: 10.1088/1361-6528/aadc87. Epub 2018 Aug 23.

Abstract

Employing proper flame retardant materials is one of the most important fire safety guidelines when constructing buildings. Most flame retardants, however, contain halogen atoms that might become harmful gases to human body during combustion. We designed and fabricated an environmentally friendly flame retardant material with a superior performance for thermal insulation. Nanocrystalline cellulose (NCC) was prepared using acid hydrolysis method, and its surface was chemically modified through silylation treatment. Various characteristics of the flame retardant material, such as morphology, chemical structure, thermal stability, and thermal conductivity were investigated. When a mass ratio of NCC to methyltrimethoxysilane was 1:5, the limiting oxygen index of the silylated NCC increased to 34% and a char yield of 80% was obtained. The silylation led to enhancement in the thermal stability of NCC and generation of the char residue. Chemical structure of the residual materials after combustion was investigated by using Fourier transform infrared spectroscopy and x-ray differential photo spectroscopy.