Carbon Dots from Sugars and Ascorbic Acid: Role of the Precursors on Morphology, Properties, Toxicity, and Drug Uptake

ACS Med Chem Lett. 2018 Jul 16;9(8):832-837. doi: 10.1021/acsmedchemlett.8b00240. eCollection 2018 Aug 9.

Abstract

There is the need for reproducible, simple, high-yielding synthetic protocols aimed at obtaining carbon dots (CDs) with controlled fluorescence, photothermal and photochemical behavior, surface properties, biocompatibility, tumor targeting ability, drug absorption biodistribution, and tumor uptake. This Letter describes a systematic study on the effect of glucose, fructose, and ascorbic acid as starting materials for the preparation of highly luminescent CDs, characterized by a blue emission. Their composition and morphology are investigated by titration of OH surface groups, spectroscopic techniques, and high-resolution transmission electron microscopy (HR-TEM), and their toxicity was tested toward HeLa cells. CDs made using fructose were toxic, while those made from glucose and ascorbic acid showed good biocompatibility. The reproducible and simple synthetic procedure yields luminescent biomass-derived CDs for combined cancer therapy and diagnostics. Their doxorubicin (DOX) drug uptake was measured by spectrofluorimetry, indicating a crucial role of the morphologies of the CDs in controlling DOX loading. The glucose derived CDs showed up to 28% w/w of DOX loading.