Pro-resolving mediator maresin 1 ameliorates pain hypersensitivity in a rat spinal nerve ligation model of neuropathic pain

J Pain Res. 2018 Aug 10:11:1511-1519. doi: 10.2147/JPR.S160779. eCollection 2018.

Abstract

Background: Pro-resolving mediators (PRMs) are considered as emerging analgesics for chronic pain. Maresin 1 (MaR1) is a newly identified member of PRMs, and recent studies implicate its potential role in some pain conditions. As the function of MaR1 in neuropathic pain remains unclear, we investigated the effects of MaR1 on pain hypersensitivity and the underlying mechanism using a rat spinal nerve ligation (SNL) model of neuropathic pain.

Materials and methods: MaR1 (100 ng/10 μL) or commensurable artificial cerebrospinal fluid was delivered via intrathecal catheter from days 3 to 5 post-SNL followed by assessment of mechanical allodynia and thermal hyperalgesia. Ipsilateral L4-L5 spinal cord tissue was collected on day 7 post-SNL and assessed by Western blotting, enzyme-linked immunosorbent assay or immunohistochemistry.

Results: Intrathecal MaR1 significantly attenuated mechanical allodynia and thermal hyperalgesia from day 5 to day 7 post-SNL, which was associated with decreased spinal levels of glial markers, GFAP and IBA1. It was also found that intrathecal MaR1 downregulated phosphorylation levels of NF-κB p65 and its nuclear translocation, as well as decreased protein levels of pro-inflammatory cytokines, TNF-α, IL-1β and IL-6. Further, MaR1 treatment restored PSD95 and synapsin II levels, suggesting that MarR1 also protected synaptic integrity.

Conclusion: Our results indicate that MaR1 ameliorates the SNL-induced neuropathic pain by regulating glial activities and pro-inflammatory cytokines release. The present study offers insight into the potential of MaR1 as a novel intervention to ameliorate neuropathic pain.

Keywords: NF-κB p65; inflammation; maresin 1; neuropathic pain; spinal nerve ligation.