Functionalization of Hollow Nanomaterials for Catalytic Applications: Nanoreactor Construction

Adv Mater. 2019 Sep;31(38):e1800426. doi: 10.1002/adma.201800426. Epub 2018 Aug 20.

Abstract

Hollow nanomaterials have attracted a broad interest in multidisciplinary research due to their unique structure and preeminent properties. Owing to the high specific surface area, well-defined active site, delimited void space, and tunable mass transfer rate, hollow nanostructures can serve as excellent catalysts, supports, and reactors for a variety of catalytic applications, including photocatalysis, electrocatalysis, heterogeneous catalysis, homogeneous catalysis, etc. Based on state-of-the-art synthetic methods and characterization techniques, researchers focus on the purposeful functionalization of hollow nanomaterials for catalytic mechanism studies and intricate catalytic reactions. Herein, an overview of current reports with respect to the catalysis of functionalized hollow nanomaterials is given, and they are classified into five types of versatile strategies with a top-down perspective, including textual and composition modification, encapsulation, multishelled construction, anchored single atomic site, and surface molecular engineering. In the detailed case studies, the design and construction of hierarchical hollow catalysts are discussed. Moreover, since hollow structure offers more than two types of spatial-delimited sites, complicated catalytic reactions are elaborated. In summary, functionalized hollow nanomaterials provide an ideal model for the rational design and development of efficient catalysts.

Keywords: catalysis; functionalization; hollow nanomaterials; synthesis.

Publication types

  • Review