Cu(II)-Schiff base covalently anchored to MIL-125(Ti)-NH2 as heterogeneous catalyst for oxidation reactions

J Colloid Interface Sci. 2018 Dec 15:532:700-710. doi: 10.1016/j.jcis.2018.07.140. Epub 2018 Aug 1.

Abstract

MIL-125(Ti)-NH2 has been modified by reaction of salicylaldehyde with the terephthalate amino groups to form a salicylideneimine that act as ligand of Cu2+. The success of the postsynthetic modification was assessed by FTIR spectroscopy of the MIL-125(Ti)-NH2-Sal-Cu and by analysis by 1H NMR spectroscopy of the organic linkers upon dissolution of MIL-125(Ti)-NH2-Sal-Cu. In comparison with parent MIL-125(Ti)-NH2 and MIL-125(Ti)-NH2-Sal, that exhibit a poor activity, the presence of the Cu-Schiff base complex in MIL-125(Ti)-NH2-Sal-Cu catalyst for the oxidation of 1-phenylethanol by tert-butylhydroperoxyde (TBHP, 3 eq.) increases notably the catalytic activity. Hot filtration test and reusability experiments confirm that the process is heterogeneous and that MIL-125(Ti)-NH2-Sal-Cu is stable under the reaction conditions. Quenching studies and EPR spectra using N-tbutylphenylnitrone indicate the generation of tBuOO and tBuO under the reaction conditions. The scope of MIL-125(Ti)-NH2-Sal-Cu as oxidation catalyst by tBuOOH was studied for benzyl alcohol as well as alicyclic and aliphatic alcohols and ethylbenzene.

Keywords: Heterogeneous catalysis; Metal-organic frameworks: Cu(II) Schiff-base complex; Tert-butylhydroperoxyde.