Visual detection of peroxide-based explosives using novel mimetic Ag nanoparticle/ZnMOF nanocomposite

J Hazard Mater. 2018 Oct 15:360:233-242. doi: 10.1016/j.jhazmat.2018.08.013. Epub 2018 Aug 6.

Abstract

A simple and selective colorimetric method for the detection of perilous peroxide explosives was developed using the peroxidase mimetic activity of silver nanoparticles/flake-like zinc metal-organic framework nanocomposite (Ag@ZnMOF). The synthesis of Ag@ZnMOF contained the formation of silver nanoparticles (AgNPs) inside the fine pores of Zn metal-organic framework (ZnMOF). High reactive AgNPs as well as great surface area of MOFs provided a synergetic and high improved catalytic activity for the composite which was studied as a peroxidase mimic in hydrogen peroxide (H2O2)-based oxidations. The achieved system was used for detection of Triacetone triperoxide (TATP) as one of the most hazardous peroxide explosives. TATP was decomposed in an acidic condition to generate H2O2, which was then applied to oxidize 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of the Ag@ZnMOF as a catalyst. This reaction led to the production of well-known blue colored charge transfer complex (oxTMB), which was recognized by the colorimetric technique. A linear relationship was obtained between the absorption intensity of the produced blue solution and the TATP concentration in the range of 0.4-15 mg L-1, with a detection limit of 0.1 mg L-1. A portable test kit was prepared using the same reagents for TATP measurement in real samples.

Keywords: Ag nanoparticles; MOF nanocomposites; Mimetic; Peroxide explosives; Triacetone triperoxide.