Material microenvironmental properties couple to induce distinct transcriptional programs in mammalian stem cells

Proc Natl Acad Sci U S A. 2018 Sep 4;115(36):E8368-E8377. doi: 10.1073/pnas.1802568115. Epub 2018 Aug 17.

Abstract

Variations in a multitude of material microenvironmental properties have been observed across tissues in vivo, and these have profound effects on cell phenotype. Phenomenological experiments have suggested that certain of these features of the physical microenvironment, such as stiffness, could sensitize cells to other features; meanwhile, mechanistic studies have detailed a number of biophysical mechanisms for this sensing. However, the broad molecular consequences of these potentially complex and nonlinear interactions bridging from biophysical sensing to phenotype have not been systematically characterized, limiting the overall understanding and rational deployment of these biophysical cues. Here, we explore these interactions by employing a 3D cell culture system that allows for the independent control of culture substrate stiffness, stress relaxation, and adhesion ligand density to systematically explore the transcriptional programs affected by distinct combinations of biophysical parameters using RNA-seq. In mouse mesenchymal stem cells and human cortical neuron progenitors, we find dramatic coupling among these substrate properties, and that the relative contribution of each property to changes in gene expression varies with cell type. Motivated by the bioinformatic analysis, the stiffness of hydrogels encapsulating mouse mesenchymal stem cells was found to regulate the secretion of a wide range of cytokines, and to accordingly influence hematopoietic stem cell differentiation in a Transwell coculture model. These results give insights into how biophysical features are integrated by cells across distinct tissues and offer strategies to synthetic biologists and bioengineers for designing responses to a cell's biophysical environment.

Keywords: RNA-seq; biomaterials; mechanotransduction; stem cells; systems biology.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Alginates* / chemistry
  • Alginates* / pharmacology
  • Animals
  • Cell Culture Techniques / methods*
  • Cell Differentiation / drug effects
  • Glucuronic Acid / chemistry
  • Glucuronic Acid / pharmacology
  • Hematopoietic Stem Cells / cytology
  • Hematopoietic Stem Cells / metabolism*
  • Hexuronic Acids / chemistry
  • Hexuronic Acids / pharmacology
  • Hydrogels* / chemistry
  • Hydrogels* / pharmacology
  • Mesenchymal Stem Cells / cytology
  • Mesenchymal Stem Cells / metabolism*
  • Mice
  • Stem Cell Niche*
  • Transcription, Genetic / drug effects*

Substances

  • Alginates
  • Hexuronic Acids
  • Hydrogels
  • Glucuronic Acid