Tunable, omnidirectional, and nearly perfect resonant absorptions by a graphene-hBN-based hole array metamaterial

Opt Express. 2018 Jun 25;26(13):16940-16954. doi: 10.1364/OE.26.016940.

Abstract

In this paper, we propose an electrically tunable mid-infrared plasmonic-phononic absorber with omnidirectional and polarization insensitive nearly perfect resonant absorption characteristics. The absorber consists of a graphene/hexagonal boron nitride (hBN)/graphene multilayer on top of a gold bottom reflector separated by a dielectric spacer. The graphene/hBN/graphene multilayer is patterned as a hole array in square lattice. We analytically and numerically prove that, due to the support of hybrid plasmon-phonon-polaritons, nearly perfect multi-resonant absorption peaks with high quality factors are obtained both inside and outside of the Reststrahlen band of hBN. As a result of the hybridization of graphene plasmons with the hyperbolic phonon polaritons of hBN, the high quality resonant absorptions of the metamaterial are almost unaffected by decreasing the phenomenological electron relaxation time of graphene. Moreover, the obtained resonances can be effectively tuned in practice due to the continuity of the graphene layers in the hole array metamaterial. These features make the graphene-hBN metamaterial a skeptical design for practical purposes and mid-infrared multi-functional operations such as sensing.