Focus shaping of the radially polarized Laguerre-Gaussian-correlated Schell-model vortex beams

Opt Express. 2018 Aug 6;26(16):20076-20088. doi: 10.1364/OE.26.020076.

Abstract

In this paper, we introduce a new kind of partially coherent vector beam with special correlation function and vortex phase named radially polarized Laguerre-Gaussian-correlated Schell-model (LGCSM) vortex beam as a natural extension of scalar LGCSM vortex beam. The realizability conditions for such beam are derived. The tight focusing properties of a radially polarized LGCSM vortex beam passing through a high numerical aperture (NA) objective lens are investigated numerically based on the vectorial diffraction theory. We find that not only the transverse component but also the longitudinal component of the focal field distributions can be shaped by regulating the structures of the correlation functions, which is quite different from that of the conventional radially polarized partially coherent beam. Moreover, a series of wildly used focal field with novel structure, e.g., focal spot, flat-topped or doughnut beam profiles, needle-like focal field and controllable three-dimensional (3D) optical cage, were obtained. These results indicate that the focus shaping can be achieved by combining the regulation of the structures of the correlation functions with the regulation of beam parameters effectively. Our results may be useful for potential applications in optical trapping, optical high-resolution microscopy and optical data storage.