Quantum-limited directional amplifier based on a triple-cavity optomechanical system

Opt Express. 2018 Jun 11;26(12):15255-15267. doi: 10.1364/OE.26.015255.

Abstract

We theoretically propose a scheme for realizing a quantum-limited directional amplifier in a triple-cavity optomechanical system, where one microwave cavity and two optical cavities are, respectively, coupled to a common mechanical resonator. Moreover, the two optical cavities are coupled directly to facilitate the directional amplification between microwave and optical photons. We find that directional amplification between the three cavity modes is achieved with two gain process and one conversion process, and the direction of amplification can be modulated by controlling the phase difference between the field-enhanced optomechanical coupling strengths. Furthermore, with increasing the optomechanical cooperativity, both gain and bandwidth of the directional amplifier can be enhanced, and the noise added to the amplifier can be suppressed to approach the standard quantum limit on the phase-preserving linear amplifier.