Impact of Information Loss on Reconstruction Quality in Microwave Tomography for Medical Imaging

Diagnostics (Basel). 2018 Aug 14;8(3):52. doi: 10.3390/diagnostics8030052.

Abstract

This paper studies how limited information in data acquired by a wideband microwave tomography (MWT) system can affect the quality of reconstructed images. Limitations can arise from experimental errors, mismatch between the system and its model in the imaging algorithm, or losses in the immersion and coupling medium which are required to moderate this mismatch. We also present a strategy for improving reconstruction performance by discarding data that is dominated by experimental errors. The approach relies on recording transmitted signals in a wide frequency range, and then correlating the data in different frequencies. We apply this method to our wideband MWT prototype, which has been developed in our previous work. Using this system, we present results from simulated and experimental data which demonstrate the practical value of the frequency selection approach. We also propose a K-neighbour method to identify low quality data in a robust manner. The resulting enhancement in imaging quality suggests that this approach can be useful for various medical imaging scenarios, provided that data from multiple frequencies can be acquired and used in the reconstruction process.

Keywords: medical imaging; microwave tomography; reconstruction.