Investigations on the Electrochemical Atomic Layer Growth of Bi₂Se₃ and the Surface Limited Deposition of Bismuth at the Silver Electrode

Materials (Basel). 2018 Aug 14;11(8):1426. doi: 10.3390/ma11081426.

Abstract

The Electrochemical Atomic Layer Deposition (E-ALD) technique is used for the deposition of ultrathin films of bismuth (Bi) compounds. Exploiting the E-ALD, it was possible to obtain highly controlled nanostructured depositions as needed, for the application of these materials for novel electronics (topological insulators), thermoelectrics and opto-electronics applications. Electrochemical studies have been conducted to determine the Underpotential Deposition (UPD) of Bi on selenium (Se) to obtain the Bi₂Se₃ compound on the Ag (111) electrode. Verifying the composition with X-ray Photoelectron Spectroscopy (XPS) showed that, after the first monolayer, the deposition of Se stopped. Thicker deposits were synthesized exploiting a time-controlled deposition of massive Se. We then investigated the optimal conditions to deposit a single monolayer of metallic Bi directly on the Ag.

Keywords: E-ALD; UPD; bismuth; bismuth selenide; topological insulator.