Enzymatic Amide Tailoring Promotes Retro-Aldol Amino Acid Conversion To Form the Antifungal Agent Aspirochlorine

Angew Chem Int Ed Engl. 2018 Oct 22;57(43):14051-14054. doi: 10.1002/anie.201806740. Epub 2018 Sep 24.

Abstract

Aspirochlorine is an unusual antifungal cyclopeptide produced by Aspergillus oryzae, an important mold used for food fermentation. Whereas its structure suggested that a non-ribosomal peptide synthetase assembles the cyclopeptide from phenylalanine and glycine building blocks, labeling studies indicated that one Phe moiety is transformed into Gly after peptide formation. By means of genetic engineering, heterologous expression, biotransformations, and in vitro assays, we dissected and reconstituted four crucial steps in aspirochlorine biosynthesis, which involve two cytochrome P450 monooxygenases, (AclL and AclO), a methyltransferase (AclU), and a halogenase (AclH). We found that the installation of the N-methoxylation of the peptide bond sets the stage for a retro-aldol reaction that leads to the Phe-to-Gly conversion. The substrate scopes of the dedicated enzymes as well as bioassays revealed that the peptide editing has evolved to optimize the antifungal action of the natural product.

Keywords: Aspergillus oryzae; biosynthesis; enzyme catalysis; peptide editing; retro-aldol reaction.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aldehydes / chemistry*
  • Amides / chemistry*
  • Amino Acids / chemistry*
  • Antifungal Agents / chemical synthesis*
  • Antifungal Agents / pharmacology
  • Aspergillus fumigatus / drug effects
  • Candida albicans / drug effects
  • Chromatography, High Pressure Liquid / methods
  • Mass Spectrometry / methods
  • Microbial Sensitivity Tests
  • Mycotoxins / chemical synthesis*
  • Mycotoxins / pharmacology
  • Peptide Synthases / chemistry*
  • Schizosaccharomyces / drug effects
  • Spiro Compounds / chemical synthesis*
  • Spiro Compounds / pharmacology
  • Structure-Activity Relationship

Substances

  • Aldehydes
  • Amides
  • Amino Acids
  • Antifungal Agents
  • Mycotoxins
  • Spiro Compounds
  • aspirochlorine
  • 3-hydroxybutanal
  • Peptide Synthases
  • non-ribosomal peptide synthase