Observation of short wavelength infrared (SWIR) Cherenkov emission

Opt Lett. 2018 Aug 15;43(16):3854-3857. doi: 10.1364/OL.43.003854.

Abstract

Cherenkov emission induced by external beam radiation from a clinical linear accelerator has been shown in preclinical molecular imaging and clinical imaging. The broad spectrum Cherenkov emission should have a short wavelength infrared (SWIR, 1000-1700 nm) component, as predicted theoretically. To the best of our knowledge, this Letter is the first experimental observation of this SWIR Cherenkov emission induced by external beam radiation. The measured spectrum of SWIR Cherenkov emission matches the theoretical prediction, with a fluence rate near one-third of the visible and near-infrared red emissions (Vis-NIR, 400-900 nm). Imaging in water-based phantoms and biological tissues indicates that there is a sufficient fluence rate for radiotherapy dosimetry applications. The spatial resolution is improved approximately 5.3 times with SWIR Cherenkov emission detection versus Vis-NIR Cherenkov emission, which provides some improvement in the potential for higher resolution Cherenkov emission dosimetry and molecular sensing during clinical radiotherapy by imaging with SWIR wavelengths.