Simultaneous voltammetric detection of 5-hydroxyindole-3-acetic acid and 5-hydroxytryptamine using a glassy carbon electrode modified with conducting polymer and platinised carbon nanofibers

Mikrochim Acta. 2018 Aug 13;185(9):412. doi: 10.1007/s00604-018-2949-5.

Abstract

The authors describe a method for simultaneous voltammetric determination of 5-hydroxytryptamine (serotonin; 5-HT) and its metabolite 5-hydroxyindoleacetic acid (5-HIAA). A glassy carbon electrode was modified with poly(pyrrole-3-carboxylic acid) and with platinised carbon nanofibers to obtain a sensor that can quantify 5-HT and 5-HIAA with detection limits of 10 nM and 20 nM, respectively. The peak currents, best measured at voltages of 170 mV and 500 mV (vs. Ag/AgCl) for 5-HT and 5-HIAA, increase linearly in the 0.01-100 μM concentration range for both analytes. The method was successfully applied to the quantitation of 5-HT and 5-HIAA in spiked artificial urine samples, and the sensor can be used up to 10 days. Graphical abstract A new electroanalytical device was developed for separation and quantitation of 5-hydroxytryptamine (5-HT) and 5-hydroxyindole-3-acetic acid (5-HIAA), based on stripping square wave voltammetry, exploiting conducting polymer surfaces on platinised carbon nanofiber supports.

Keywords: 5-Hydroxyindole-3-acetic acid; 5-Hydroxytryptamine; Pt nanocomposites; Pyrrole-3-carboxylic acid; Quantitation in artificial urine; Stripping square wave voltammetry.

Publication types

  • Research Support, Non-U.S. Gov't