Early myoclonus following anoxic brain injury

Neurol Clin Pract. 2018 Jun;8(3):249-256. doi: 10.1212/CPJ.0000000000000466.

Abstract

Background: It is unknown whether postanoxic cortical and subcortical myoclonus are distinct entities with different prognoses.

Methods: In this retrospective cohort study of 604 adult survivors of cardiac arrest over 8.5 years, we identified 111 (18%) patients with myoclonus. Basic demographics and clinical characteristics of myoclonus were collected. EEG reports, and, when available, raw video EEG, were reviewed, and all findings adjudicated by 3 authors blinded to outcomes. Myoclonus was classified as cortical if there was a preceding, time-locked electrographic correlate and otherwise as subcortical. Outcome at discharge was determined using Cerebral Performance Category.

Results: Patients with myoclonus had longer arrests with less favorable characteristics compared to patients without myoclonus. Cortical myoclonus occurred twice as often as subcortical myoclonus (59% vs 23%, respectively). Clinical characteristics during hospitalization did not distinguish the two. Rates of electrographic seizures were higher in patients with cortical myoclonus (43%, vs 8% with subcortical). Survival to discharge was worse for patients with myoclonus compared to those without (26% vs 39%, respectively), but did not differ between subcortical and cortical myoclonus (24% and 26%, respectively). Patients with cortical myoclonus were more likely to be discharged in a comatose state than those with subcortical myoclonus (82% vs 33%, respectively). Among survivors, good functional outcome at discharge was equally possible between those with cortical and subcortical myoclonus (12% and 16%, respectively).

Conclusions: Cortical and subcortical myoclonus are seen in every sixth patient with cardiac arrest and cannot be distinguished using clinical criteria. Either condition may have good functional outcomes.

Publication types

  • Review