i3 signaling is associated with sexual dimorphic expression of the clock-controlled output gene Dbp in murine liver

Oncotarget. 2018 Jul 13;9(54):30213-30224. doi: 10.18632/oncotarget.25727.

Abstract

The albumin D-box binding protein (DBP) is a member of the PAR bZip (proline and acidic amino acid-rich basic leucine zipper) transcription factor family and functions as important regulator of circadian core and output gene expression. Gene expression of DBP itself is under the control of E-box-dependent binding by the Bmal1-Clock heterodimer and CRE-dependent binding by the cAMP responsive element binding protein (CREB). However, the signaling mechanism mediating CREB-dependent regulation of DBP expression in the peripheral clock remains elusive. In this study, we examined the role of the GPCR (G-protein-coupled receptor)/Gαi3 (Galphai3) controlled cAMP-CREB signaling pathway in the regulation of hepatic expression of core clock and clock-regulated genes, including Dbp. Analysis of circadian gene expression revealed that rhythmicity of hepatic transcript levels of the majority of core clock (including Per1) and clock-regulated genes were not affected by Gαi3 deficiency. Consistently, the period length of primary Gαi3 deficient tail fibroblasts expressing a Bmal1-Luciferase reporter was not affected. Interestingly, however, Gαi3 deficient female but not male mice showed a tendentiously increased activation of CREB (nuclear pSer133-CREB) accompanied by an advanced peak in Dbp gene expression and elevated mRNA levels of the cytochrome P450 family member Cyp3a11, a target gene of DBP. Accordingly, selective inhibition of CREB led to a strongly decreased expression of DBP and CYP3A4 (human Cyp3a11 homologue) in HepG2 liver cells. In summary, our data suggest that the Gαi3-pCREB signalling pathway functions as a regulator of sexual-dimorphic expression of DBP and its xenobiotic target enzymes Cyp3a11/CYP3A4.

Keywords: CREB; Pathology; albumin D-box binding protein; circadian regulation; cytochrome P450; galphai3/GNAI3.