Influence of biochars on the accessibility of organochlorine pesticides and microbial community in contaminated soils

Sci Total Environ. 2019 Jan 10:647:551-560. doi: 10.1016/j.scitotenv.2018.07.425. Epub 2018 Jul 31.

Abstract

Biochar can be used as a promising potential substance to reduce the availability of toxic elements and compounds in contaminated soils but its effects on the accessibility of pesticides and microbiological interactions still remain unclear. Here, 65 day incubation experiments were conducted to investigate the efficacy of biochars on the accessibility of 21 different organochlorine pesticides (OCPs), and also to evaluate their influence on soil microbial community. The tested soil was collected from an agricultural field, containing loamy sand texture, and historically contaminated with high concentrations of OCPs. The soil was amended with four different kinds of biochars: sewage sludge biochar (SSBC), peanut shells biochar (PNBC), rice straw biochar (RSBC), and soybean straw biochar (SBBC). The results indicated that biochar-amendments had strong effects upon OCP accessibility over time and can act as super sorbent. Despite greater persistence of OCPs in soil, the application of selected biochars significantly (p < 0.01) reduced the accessibility of ∑OCPs in the amended soil in the order of SSBC (8-69%), PNBC (11-75%), RSBC (6-67%), and SBBC (14-86%), as compared to the control soil during 0-65 d incubation period. Moreover, the findings from total phospholipid acid (PLFA) and Illumina next-generation sequencing revealed that the incorporation of biochar have altered the soil microbial community structure over time. Higher abundances of Proteobacteria, firmicutes, Gemmatimonadetes, and Actinobacteria were found in biochar amendments. However, the relative abundances of Acidobacteria and Chloroflexi decreased, following biochar addition. The findings of these experiments suggest that biochar addition to soil at the rate of 3% (w/w) could be advantageous for decreasing accessibility of OCPs, enhancing the soil microbial communities, and their subsequent risk to environment and food chain contamination.

Keywords: Biochar; Contaminated soil; Microbial abundance; Next-generation sequencing; Pesticides accessibility; Total PLFA.