Dihydropyridine Fluorophores Allow for Specific Detection of Human Antibodies in Serum

ACS Omega. 2018 Jul 31;3(7):7580-7586. doi: 10.1021/acsomega.8b00424. Epub 2018 Jul 10.

Abstract

Antigen recognition by antibodies plays an important role in human biology and in the development of diseases. This interaction provides a basis for multiple diagnostic assays and is a guide for treatments. We have developed dihydropyridine-based fluorophores that form stable complexes with double-stranded DNA and upon recognition of the antibodies to DNA (anti-DNA) provide an optical response. The fluorophores described herein have advantageous optical properties compared to those of the currently available dyes making them valuable for research and clinical diagnostics. By studying a series of novel fluorophores, crucial parameters for the design were established, providing the required sensitivity and specificity in the detection of antibodies. Using these DNA-fluorophore complexes in a direct immunofluorescence assay, antibodies to DNA are specifically detected in 80 patients diagnosed with an autoimmune disease, systemic lupus erythematosus. Positivity indicated by emission change of α-(4'-O-methoxyphenyl)-2-furyl dihydropyridine strongly correlates with other disease biomarkers and autoimmune arthritis.