All optical dual stage laser wakefield acceleration driven by two-color laser pulses

Sci Rep. 2018 Aug 6;8(1):11772. doi: 10.1038/s41598-018-30095-4.

Abstract

We propose an all-optical dual-stage laser wakefield acceleration (LWFA), staged with co-propagating two-color laser pulses in a plasma medium, to enhance the electron bunch energy. After the depletion of the leading fundamental laser pulse that initiates self-injection and sets up the first stage particle acceleration, the subsequent second-harmonic laser pulse takes over the acceleration process and accelerates the electron bunch in the second stage over a significantly longer distance than in the first stage. In this all optical dual-stage LWFA, the electrons can gain 3 times higher energy as compared to the energy gain from the single stage LWFA driven by a single-color laser pulse with equivalent energy. Our multi-dimensional particle-in-cell simulations demonstrate that a 10-GeV electron bunch with 20-pC charge can be obtained by the two-color dual-stage LWFA using total input laser power of 0.6 PW.