Expression of novel fusion antiviral proteins ricin a chain-pokeweed antiviral proteins (RTA-PAPs) in Escherichia coli and their inhibition of protein synthesis and of hepatitis B virus in vitro

BMC Biotechnol. 2018 Aug 6;18(1):47. doi: 10.1186/s12896-018-0458-6.

Abstract

Background: Ricin A chain (RTA) and Pokeweed antiviral proteins (PAPs) are plant-derived N-glycosidase ribosomal-inactivating proteins (RIPs) isolated from Ricinus communis and Phytolacca Americana respectively. This study was to investigate the potential production amenability and sub-toxic antiviral value of novel fusion proteins between RTA and PAPs (RTA-PAPs). In brief, RTA-Pokeweed antiviral protein isoform 1 from seeds (RTA-PAPS1) was produced in an E. coli in vivo expression system, purified from inclusion bodies using gel filtration chromatography and protein synthesis inhibitory activity assayed by comparison to the production of a control protein Luciferase. The antiviral activity of the RTA-PAPS1 against Hepatitis B virus (HBV) in HepAD38 cells was then determined using a dose response assay by quantifying supernatant HBV DNA compared to control virus infected HepAD38 cells. The cytotoxicity in HepAD38 cells was determined by measuring cell viability using a tetrazolium dye uptake assay. The fusion protein was further optimized using in silico tools, produced in an E. coli in vivo expression system, purified by a three-step process from soluble lysate and confirmed in a protein synthesis inhibition activity assay.

Results: Results showed that RTA-PAPS1 could effectively be recovered and purified from inclusion bodies. The refolded protein was bioactive with a 50% protein synthesis inhibitory concentration (IC50) of 0.06 nM (3.63 ng/ml). The results also showed that RTA-PAPS1 had a synergetic activity against HBV with a half-maximal response concentration value (EC50) of 0.03 nM (1.82 ng/ml) and a therapeutic index of > 21,818 with noticeable steric hindrance. Results also showed that the optimized protein ricin A chain mutant-Pokeweed antiviral protein isoform 1 from leaves (RTAM-PAP1) could be recovered and purified from soluble lysates with gain of function on protein synthesis inhibition activity, with an IC50 of 0.03 nM (1.82 ng/ml), and with minimal, if any, steric hindrance.

Conclusions: Collectively, our results demonstrate that RTA-PAPs are amenable to effective production and purification in native form, possess significant gain of function on protein synthesis inhibition and anti-HBV activities in vitro with a high therapeutic index and, thus, merit further development as potential potent antiviral agents against chronic HBV infection to be used as a standalone or in combination with existent therapies.

Keywords: Antiviral agent; Fusion proteins; Hepatitis B virus; Pokeweed antiviral protein; Ribosome-inactivating proteins; Ricin.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antiviral Agents / pharmacology
  • Escherichia coli / genetics*
  • Hepatitis B virus / drug effects
  • Plant Proteins / biosynthesis
  • Plant Proteins / genetics
  • Plant Proteins / pharmacology
  • Protein Biosynthesis / drug effects
  • Recombinant Fusion Proteins* / biosynthesis
  • Recombinant Fusion Proteins* / genetics
  • Recombinant Fusion Proteins* / pharmacology
  • Ribosome Inactivating Proteins, Type 1* / biosynthesis
  • Ribosome Inactivating Proteins, Type 1* / genetics
  • Ribosome Inactivating Proteins, Type 1* / pharmacology
  • Ricin* / biosynthesis
  • Ricin* / genetics
  • Ricin* / pharmacology

Substances

  • Antiviral Agents
  • Plant Proteins
  • Recombinant Fusion Proteins
  • Ribosome Inactivating Proteins, Type 1
  • Ricin
  • pokeweed antiviral protein