Feeding by common heterotrophic protists on the mixotrophic alga Gymnodinium smaydae (Dinophyceae), one of the fastest growing dinoflagellates

J Phycol. 2018 Oct;54(5):734-743. doi: 10.1111/jpy.12775. Epub 2018 Sep 12.

Abstract

Gymnodinium smaydae is one of the fastest growing dinoflagellates. However, its population dynamics are affected by both growth and mortality due to predation. Thus, feeding by common heterotrophic dinoflagellates Gyrodinium dominans, Gyrodinium moestrupii, Oblea rotunda, Oxyrrhis marina, and Polykrikos kofoidii, and the naked ciliate Pelagostrobilidium sp. on G. smaydae was investigated in the laboratory. Furthermore, growth and ingestion rates of O. marina, G. dominans, and Pelagostrobilidium sp. on G. smaydae in response to prey concentration were also determined. Oxyrrhis marina, G. dominans, G. moestrupii, and Pelagostrobilidium sp. were able to feed on G. smaydae, but P. kofoidii and O. rotunda did not feed on this dinoflagellate. The maximum growth rate of O. marina on G. smaydae was 0.411 per day. However, G. smaydae did not support the positive growth of Pelagostrobilidium sp. The maximum ingestion rates of O. marina and Pelagostrobilidium sp. on G. smaydae were 0.27 and 6.91 ng C · predator-1 · d-1 , respectively. At the given mean prey concentrations, the highest growth and ingestion rates of G. dominans on G. smaydae were 0.114 per day and 0.04 ng C · predator-1 · d-1 , respectively. The maximum growth and ingestion rates of O. marina on G. smaydae are lower than those on most of the other algal prey species. Therefore, O. marina may be an effective predator of G. smaydae, but G. smaydae may not be the preferred prey for supporting high growth of the predator in comparison to other species as inferred from a literature survey.

Keywords: feeding; growth; harmful algal bloom; ingestion; red tide.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Ciliophora / physiology*
  • Dinoflagellida / physiology*
  • Food Chain*
  • Heterotrophic Processes
  • Population Dynamics
  • Predatory Behavior*