Can We Swim Yet? Systematic Review, Meta-Analysis, and Risk Assessment of Aging Sewage in Surface Waters

Environ Sci Technol. 2018 Sep 4;52(17):9634-9645. doi: 10.1021/acs.est.8b01948. Epub 2018 Aug 20.

Abstract

This study investigated the risk of gastrointestinal illness associated with swimming in surface waters with aged sewage contamination. First, a systematic review compiled 333 first order decay rate constants ( k) for human norovirus and its surrogates feline calicivirus and murine norovirus, Salmonella, Campylobacter, Escherichia coli O157:H7, Giardia, and Cryptosporidium, and human-associated indicators in surface water. A meta-analysis investigated effects of sunlight, temperature, and water matrix on k. There was a relatively large number of k for bacterial pathogens and some human-associated indicators ( n > 40), fewer for protozoans ( n = 14-22), and few for human norovirus and its Caliciviridae surrogates ( n = 2-4). Average k ranked: Campylobacter > human-associated markers > Salmonella> E. coli O157:H7 > norovirus and its surrogates > Giardia > Cryptosporidium. Compiled k values were used in a quantitative microbial risk assessment (QMRA) to simulate gastrointestinal illness risk associated with swimming in water with aged sewage contamination. The QMRA used human-associated fecal indicator HF183 as an index for the amount of sewage present and thereby provided insight into how risk relates to HF183 concentrations in surface water. Because exposure to norovirus contributed the majority of risk, and HF183 k is greater than norovirus k, the risk associated with exposure to a fixed HF183 concentration increases with the age of contamination. Swimmer exposure to sewage after it has aged ∼3 days results in median risks less than 30/1000. A risk-based water quality threshold for HF183 in surface waters that takes into account uncertainty in contamination age is derived to be 4100 copies/100 mL.

Publication types

  • Meta-Analysis
  • Research Support, Non-U.S. Gov't
  • Systematic Review

MeSH terms

  • Animals
  • Escherichia coli
  • Feces
  • Humans
  • Mice
  • Risk Assessment
  • Sewage*
  • Swimming*
  • Water Microbiology

Substances

  • Sewage