Tree species affects the concentration of total mercury (Hg) in forest soils: Evidence from a forest soil inventory in Poland

Sci Total Environ. 2019 Jan 10:647:141-148. doi: 10.1016/j.scitotenv.2018.07.452. Epub 2018 Aug 1.

Abstract

This study was performed to test the hypothesis that tree species significantly affects mercury (Hg) sequestration in forest soils. We analyzed the effect of seven dominant tree species (Scots pine, black alder, Norway spruce, silver birch, deciduous oak, silver fir, and European beech on the concentrations and pools of Hg in a range of forest soils in Poland. We set up 277 sample plots representing dominant tree species in Poland. Soil samples were taken and analyzed for total Hg content, soil texture, and soil C and nitrogen (N) content. Concentrations of total Hg in forest soil (organic and mineral horizons) varied by several orders of magnitude as a result of natural variations in organic matter, sand content, and altitude. Spatial analysis revealed that maximum concentrations (mg kg-1) and stocks (mg m-2) of Hg were related to mountain stands at higher elevations with loamy soils and greater accumulation of soil organic matter. The stocks of Hg in the investigated soil profiles increased in the order of: pine (12 mg m-2) ≈ birch (15 mg m-2) < oak (21 mg m-2) ≈ alder (24 mg m-2) < beech (45 mg m-2) ≈ spruce (50 mg m-2) < fir (66 mg m-2). Simple analysis of variance suggested an important effect of dominant tree species on Hg concentrations and stocks in entire soil profiles, but multiple regression analysis showed that dominant tree species had a significant effect on accumulation of Hg in soil, but only in the organic horizon; in mineral soil the Hg was content was related to C content, soil texture and altitude. The organic horizon had greater accumulation of Hg under coniferous tree species (Scots pine, silver fir and Norway spruce) and European beech when compared with deciduous oak, black alder, and silver birch.

Keywords: Forest soil; Mercury; Organic matter; Poland; Sand fraction.