Higher Neural Correlates in Patients with Multiple Sclerosis and Neurogenic Overactive Bladder Following Treatment with Intradetrusor Injection of OnabotulinumtoxinA

J Urol. 2019 Jan;201(1):135-140. doi: 10.1016/j.juro.2018.07.066.

Abstract

Purpose: OnabotulinumtoxinA is a well described treatment of neurogenic overactive bladder. While motor effects on the detrusor muscle have been extensively studied, the sensory effects have not. The aim of this study was to evaluate the impact of intradetrusor onabotulinumtoxinA injection on brain activity in female patients with multiple sclerosis and neurogenic overactive bladder.

Materials and methods: We prospectively studied 12 women with stable multiple sclerosis and neurogenic overactive bladder using concurrent functional magnetic resonance imaging and urodynamic studies prior to and 6 to 10 weeks following onabotulinumtoxinA injection. Individual functional magnetic resonance imaging activation maps at the time of strong urgency were averaged before and after onabotulinumtoxinA injection where areas of significant activation were identified.

Results: After onabotulinumtoxinA injection functional magnetic resonance imaging activation increased in the right cingulate body (p = 0.0012), the left posterior cingulate (p = 0.02), the left anterior cingulate (p = 0.0015), the right prefrontal cortex (p = 0.0015), the insula (p = 0.0138) and the pons micturition center (p = 0.05). Sparse areas showed decreased activity, including the left cerebellum (p = 0.001), the left fusiform gyrus (p = 0.065) and the bilateral lentiform nucleus (p = 0.026).

Conclusions: Intradetrusor injection of onabotulinumtoxinA appeared to increase the activity of most brain regions known to be involved in the sensation and process of urinary urgency in female patients with multiple sclerosis and neurogenic overactive bladder. To our knowledge this is the first study of its kind to evaluate the possible effects of onabotulinumtoxinA at the human brain level where sensory awareness is located. This activation pattern may be used to further phenotype patients to optimize therapy or determine the sensory effects of onabotulinumtoxinA beyond the bladder.

Publication types

  • Observational Study

MeSH terms

  • Adult
  • Aged
  • Botulinum Toxins, Type A / therapeutic use*
  • Brain / diagnostic imaging
  • Brain / drug effects*
  • Brain / physiopathology
  • Female
  • Humans
  • Injections, Intramuscular
  • Magnetic Resonance Imaging
  • Middle Aged
  • Multiple Sclerosis / complications
  • Multiple Sclerosis / drug therapy
  • Multiple Sclerosis / physiopathology*
  • Neuromuscular Agents / therapeutic use*
  • Prospective Studies
  • Urinary Bladder, Neurogenic / drug therapy*
  • Urinary Bladder, Neurogenic / etiology
  • Urinary Bladder, Neurogenic / physiopathology
  • Urinary Bladder, Overactive / drug therapy*
  • Urinary Bladder, Overactive / etiology
  • Urinary Bladder, Overactive / physiopathology
  • Urodynamics

Substances

  • Neuromuscular Agents
  • Botulinum Toxins, Type A
  • onabotulinum toxin A