Therapeutic effects of human mesenchymal stem cell microvesicles in an ex vivo perfused human lung injured with severe E. coli pneumonia

Thorax. 2019 Jan;74(1):43-50. doi: 10.1136/thoraxjnl-2018-211576. Epub 2018 Aug 3.

Abstract

Background: We previously reported that microvesicles (MVs) released by human mesenchymal stem cells (MSC) were as effective as the cells themselves in both Escherichia coli lipopolysaccharide and live bacteria-induced acute lung injury (ALI) mice models. However, it remained unclear whether the biological effect of MSC MV can be applied to human ALI.

Methods: In the current study, we tested the therapeutic effects of MSC MVs in a well-established ex vivo perfused human model of bacterial pneumonia. Using human donor lungs not used for transplantation, we instilled E. coli bacteria intrabronchially and, 1 hour later, administered MSC MVs into the perfusate as therapy.

Results: After 6 hours, instillation of E. coli bacteria caused influx of inflammatory cells, which resulted in significant inflammation, lung protein permeability and pulmonary oedema formation. Administration of MSC MV significantly increased alveolar fluid clearance and reduced protein permeability and numerically lowered the bacterial load in the injured alveolus. The beneficial effect on bacterial killing was more pronounced with pretreatment of MSCs with a Toll-like receptor 3 agonist, polyinosinic:polycytidylic acid (Poly (I:C)), prior to the isolation of MVs. Isolated human alveolar macrophages had increased antimicrobial activity with MSC MV treatment in vitro as well. Although oxygenation and lung compliance levels were similar between injury and treatment groups, administration of MSC MVs numerically decreased median pulmonary artery pressure at 6 hours.

Conclusions: In summary, MSC MVs increased alveolar fluid clearance and reduced lung protein permeability, and pretreatment with Poly (I:C) enhanced the antimicrobial activity of MVs in an ex vivo perfused human lung with severe bacteria pneumonia.

Keywords: ards; pneumonia; pulmonary oedema.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Acute Lung Injury / microbiology
  • Acute Lung Injury / pathology
  • Acute Lung Injury / physiopathology*
  • Acute Lung Injury / therapy*
  • Adult
  • Aged
  • Arterial Pressure
  • Bacterial Load
  • Cell- and Tissue-Based Therapy*
  • Cell-Derived Microparticles* / drug effects
  • Escherichia coli Infections / complications*
  • Female
  • Humans
  • Interferon Inducers / pharmacology
  • Leukocyte Count
  • Lung Compliance
  • Male
  • Mesenchymal Stem Cells* / drug effects
  • Middle Aged
  • Neutrophils
  • Organ Culture Techniques
  • Oxygen / metabolism
  • Permeability
  • Pneumonia, Bacterial / complications*
  • Poly I-C / pharmacology
  • Proteins / metabolism*
  • Pulmonary Alveoli / metabolism*
  • Pulmonary Alveoli / microbiology
  • Pulmonary Alveoli / pathology
  • Pulmonary Artery
  • Pulmonary Edema / microbiology
  • Pulmonary Edema / therapy
  • Toll-Like Receptor 3 / agonists
  • Tumor Necrosis Factor-alpha / metabolism

Substances

  • Interferon Inducers
  • Proteins
  • TLR3 protein, human
  • Toll-Like Receptor 3
  • Tumor Necrosis Factor-alpha
  • Poly I-C
  • Oxygen