Genetic diversity of sweet corn inbreds using agro-morphological traits and microsatellite markers

3 Biotech. 2018 Aug;8(8):332. doi: 10.1007/s13205-018-1353-5. Epub 2018 Jul 21.

Abstract

Assessment of genetic diversity is a pre-requisite to broaden the genetic background of cultivated base of sweet corn, an endosperm mutant of field corn that alters starch biosynthesis pathway in endosperm. In the current investigation, genetic divergence among 39 inbred lines was assessed on the basis of 14 agro-morphological traits, two quality parameters and 63 microsatellite markers, selected on the basis of their association with QTLs affecting kernel quality. The cluster analysis based on unweighted pair-group method using arithmetic averages for agro-morphological and quality traits grouped the 39 inbreds into three clusters with 5, 14 and 20 genotypes, respectively. The unweighted neighbor-joining method for microsatellite markers also categorized the inbred lines into three major clusters grouping 10, 9 and 20 genotypes in cluster I, II and III, respectively. The two cluster distribution patterns showed approximately 36 percent similarity. The assay of 30 microsatellite repeats identified 82 alleles with allele size ranging from 80 to 400 bp. The major allele frequency and PIC value of the markers ranged from 0.42 to 0.79 and 0.27 to 0.63, respectively, which suggested the presence of high amount of polymorphism among the inbreds. The average heterozygosity was recorded to be 0.19 which signifies proper maintenance of inbred population. Principle co-ordinate analysis also depicted diverse nature of inbred lines and agreed well with the previously determined clustering pattern. This study has identified several inbreds, having good yield and high sugar content which will not only enhance the genetic background of sweet corn germplasm but will also lead to development of high-yielding hybrids with improved quality.

Keywords: Endosperm mutant; Genetic diversity; Kernel quality; Microsatellite; Sweet corn.