Ultra-subwavelength thickness for dual/triple-band metamaterial absorber at very low frequency

Sci Rep. 2018 Aug 2;8(1):11632. doi: 10.1038/s41598-018-29896-4.

Abstract

An integrated model utilizing external parasitic capacitors for a dual-band metamaterial perfect absorber (DMPA) is proposed and demonstrated in the UHF radio band. By adjusting the lumped capacitors on a simple meta-surface, the thickness of absorber is reduced to be only 1/378 and 1/320 with respect to the operating wavelength at 305 and 360.5 MHz, respectively. The simulations and the experiments confirm that the DMPA can maintain an absorption over 91% in a wide range of incident angle (up to 55°) and independent of the polarization of incident radiation. Additionally, we examine the integrated model for smaller dual-band absorber and absorption performance at higher frequencies (LTE band). Finally, we consolidate our approach by fabricating an ultrathin triple-band perfect absorber miniaturized to be only 1/591 of the longest operating wavelength. Our work is expected to contribute to the actualization of metamaterial-based devices working at radio frequency.