Production of methane and ethylene from plastic in the environment

PLoS One. 2018 Aug 1;13(8):e0200574. doi: 10.1371/journal.pone.0200574. eCollection 2018.

Abstract

Mass production of plastics started nearly 70 years ago and the production rate is expected to double over the next two decades. While serving many applications because of their durability, stability and low cost, plastics have deleterious effects on the environment. Plastic is known to release a variety of chemicals during degradation, which has a negative impact on biota. Here, we show that the most commonly used plastics produce two greenhouse gases, methane and ethylene, when exposed to ambient solar radiation. Polyethylene, which is the most produced and discarded synthetic polymer globally, is the most prolific emitter of both gases. We demonstrate that the production of trace gases from virgin low-density polyethylene increase with time, with rates at the end of a 212-day incubation of 5.8 nmol g-1 d-1 of methane, 14.5 nmol g-1 d-1 of ethylene, 3.9 nmol g-1 d-1 of ethane and 9.7 nmol g-1 d-1 of propylene. Environmentally aged plastics incubated in water for at least 152 days also produced hydrocarbon gases. In addition, low-density polyethylene emits these gases when incubated in air at rates ~2 times and ~76 times higher than when incubated in water for methane and ethylene, respectively. Our results show that plastics represent a heretofore unrecognized source of climate-relevant trace gases that are expected to increase as more plastic is produced and accumulated in the environment.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Ethylenes / chemistry
  • Ethylenes / metabolism*
  • Hydrocarbons / chemistry
  • Hydrocarbons / metabolism
  • Methane / chemistry
  • Methane / metabolism*
  • Plastics / chemistry
  • Plastics / metabolism*
  • Polyethylene / chemistry
  • Sunlight

Substances

  • Ethylenes
  • Hydrocarbons
  • Plastics
  • Polyethylene
  • ethylene
  • Methane

Grants and funding

This research was supported by National Science Foundation (C-MORE, DBI-0424599 to DMK and OCE-1260164 to Matthew J. Church and DMK), the Simons Foundation (SCOPE Award ID 329108 to DMK), the Balzan Prize for Oceanography (awarded to DMK) and the Gordon and Betty Moore Foundation’s Marine Microbiology Initiative (grant #3794 to DMK). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.