Tandem dual-functioning multiple-quantum-well diodes for a self-powered light source

Opt Lett. 2018 Aug 1;43(15):3710-3713. doi: 10.1364/OL.43.003710.

Abstract

Nitride-based semiconductor materials inherently have the intriguing functionalities of emission and photodetection. In particular, InGaN/GaN multiple-quantum-well (MQW) diodes exhibit dual light-harvesting and light-emitting modes of operation. Here a multifunctional system is proposed to integrate MQW diodes within a single chip with enhanced functionalities toward diverse applications of the Internet of Things (IoT). When we shine light on the MQW diodes, the absorbed photons can produce electron-hole pairs to charge an external capacitor. The energy of the ambient light is converted into electrical energy, which in turn powers the same MQW diode for lighting. The electrical energy within the capacitor is finally converted into the energy of the emitted light. Therefore, InGaN/GaN MQW diodes can be made to harvest energy from ambient light sources for IoT applications from a self-powered light source to intelligent terminal charging system.