Voltammetric sensing of sulfamethoxazole using a glassy carbon electrode modified with a graphitic carbon nitride and zinc oxide nanocomposite

Mikrochim Acta. 2018 Jul 31;185(8):396. doi: 10.1007/s00604-018-2934-z.

Abstract

A voltammetric sensor is described for the determination the antibiotic sulfamethoxazole (SMZ). It is based on the use of a glassy carbon electrode (GCE) modified with a nanocomposite prepared from graphitic carbon nitride and zinc oxide (g-C3N4/ZnO). The nanorod-like ZnO nanostructure were synthesized sonochemically. The g-C3N4/ZnO nanocomposite was then prepared by mixing g-C3N4 with ZnO, followed by ultrasonication. The morphology and structure of the nanocomposite were characterized by X-ray diffraction, Fourier-transform infrared spectroscopy and transmission electron microscopy. Under the optimal conditions, the response of the electrode, typically measured between 0.8 and 0.9 V (vs. Ag/AgCl), increases linearly in the 20 nM to 1.1 mM SMZ concentration range, and the lower detection limit is 6.6 nM. This is better than that of many previously reported sensors for SMZ. The modified electrode is highly selective, well reproducible and maintains its activity for at least 4 weeks. It was applied to the determination of SMZ in spiked human blood serum samples in with satisfactory results. Graphical abstract Schematic presentation of the voltammetric sensor for sulfamethoxazole. It consists of a glassy carbon electrode modified with a nanocomposite prepared from graphitic carbon nitride (g-C3N4/ZnO) that was supported with zinc oxide nanorods.

Keywords: Electrocatalysis; High electron transfer rate; Physiological fluids; Sonochemical synthesis; Sulfonamide drug.