Ionic silicon improves endothelial cells' survival under toxic oxidative stress by overexpressing angiogenic markers and antioxidant enzymes

J Tissue Eng Regen Med. 2018 Nov;12(11):2203-2220. doi: 10.1002/term.2744. Epub 2018 Oct 24.

Abstract

Oxidative stress, induced by harmful levels of reactive oxygen species, is a common occurrence that impairs proper bone defect vascular healing through the impairment of endothelial cell function. Ionic silicon released from silica-based biomaterials, can upregulate hypoxia-inducible factor-1α (HIF-1α). Yet it is unclear whether ionic Si can restore endothelial cell function under oxidative stress conditions. Therefore, we hypothesized that ionic silicon can help improve human umbilical vein endothelial cells' (HUVECs') survival under toxic oxidative stress. In this study, we evaluated the ionic jsilicon effect on HUVECs viability, proliferation, migration, gene expression, and capillary tube formation under normal conditions and under harmful hydrogen peroxide levels. We demonstrated that 0.5-mM Si4+ significantly enhanced angiogenesis in HUVECs under normal condition (p < 0.05). HUVECs exposed to 0.5-mM Si4+ presented a morphological change, even without the bed of Matrigel, and formed significantly more tube-like structures than the control (p < 0.001). In addition, 0.5-mM Si4+ enhanced cell viability in HUVECs under harmful H2 O2 levels. HIF-1α, vascular endothelial growth factor-A, and vascular endothelial growth factor receptor-2 were overexpressed more than twofold in silicon-treated HUVECs, under normal and toxic H2 O2 conditions. Moreover, the HUVECs were treated with 0.5-mM Si4+ overexpressed superoxide dismutase-1 (SOD-1), catalase-1 (Cat-1), and nitric oxide synthase-3 (NOS3) under normal and oxidative stress environment (p < 0.01). A computational model was used for explaining the antioxidant effect of Si4+ in endothelial cells and human periosteum cells by SOD-1 enhancement. In conclusion, we demonstrated that 0.5-mM Si4+ can recover the HUVECs' viability under oxidative stress conditions by reducing cell death and upregulating expression of angiogenic and antioxidant factors.

Keywords: angiogenesis; angiogenic markers; antioxidant enzymes; cell survival; endothelial cells; ionic silicon; oxidative stress.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Apoptosis / drug effects
  • Biocompatible Materials* / chemistry
  • Biocompatible Materials* / pharmacology
  • Gene Expression Regulation / drug effects
  • Human Umbilical Vein Endothelial Cells / metabolism*
  • Humans
  • Hydrogen Peroxide / adverse effects*
  • Hydrogen Peroxide / pharmacology
  • Intracellular Signaling Peptides and Proteins
  • Mitochondrial Proteins
  • Neoplasm Proteins / metabolism
  • Neovascularization, Physiologic / drug effects*
  • Nitric Oxide Synthase / biosynthesis
  • Oxidative Stress / drug effects*
  • Oxidoreductases / biosynthesis*
  • Silicates* / chemistry
  • Silicates* / pharmacology
  • Silicon / chemistry
  • Silicon / pharmacology
  • Vascular Endothelial Growth Factor A / biosynthesis*
  • Vascular Endothelial Growth Factor Receptor-2 / biosynthesis

Substances

  • Biocompatible Materials
  • HIGD1A protein, human
  • Intracellular Signaling Peptides and Proteins
  • Mitochondrial Proteins
  • Neoplasm Proteins
  • Silicates
  • Vascular Endothelial Growth Factor A
  • sodium metasilicate
  • Hydrogen Peroxide
  • Oxidoreductases
  • Nitric Oxide Synthase
  • KDR protein, human
  • Vascular Endothelial Growth Factor Receptor-2
  • Silicon