Amelioration of Diabetic Nephropathy Using a Retinoic Acid Receptor β 2 Agonist

J Pharmacol Exp Ther. 2018 Oct;367(1):82-94. doi: 10.1124/jpet.118.249375. Epub 2018 Jul 27.

Abstract

Vitamin A (VA) and its derivatives, known as retinoids, play critical roles in renal development through retinoic acid receptor β2 (RARβ2). Disruptions in VA signaling pathways are associated with the onset of diabetic nephropathy (DN). Despite the known role of RARβ2 in renal development, the effects of selective agonists for RARβ2 in a high-fat diet (HFD) model of DN are unknown. Here we examined whether AC261066 (AC261), a highly selective agonist for RARβ2, exhibited therapeutic effects in a HFD model of DN in C57BL/6 mice. Twelve weeks of AC261 administration to HFD-fed mice was well tolerated with no observable side effects. Compared with HFD-fed mice, HFD + AC261-treated mice had improved glycemic control and reductions in proteinuria and urine albumin-to-creatinine ratio. Several cellular hallmarks of DN were mitigated in HFD + AC261-treated mice, including reductions in tubule lipid droplets, podocyte (POD) effacement, endothelial cell collapse, mesangial expansion, and glomerular basement membrane thickening. Mesangial and tubule interstitial expression of the myofibroblast markers α-smooth muscle actin (α-SMA) and type IV collagen (Col-IV) was lower in HFD + AC261-treated mice compared with HFD alone. Ultrastructural and immunohistochemistry analyses showed that, compared with HFD-fed mice, HFD + AC261-treated mice showed preservation of POD foot process and slit-diaphragm morphology, an increase in the levels of slit-diagram protein podocin, and the transcription factor Wilms tumor-suppressor gene 1 in PODs. Given the need for novel DN therapies, our results warrant further studies of the therapeutic properties of AC261 in DN.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Actins / metabolism
  • Animals
  • Benzoates / pharmacology
  • Collagen Type IV / metabolism
  • Diabetic Nephropathies / drug therapy*
  • Diabetic Nephropathies / metabolism
  • Diet, High-Fat / adverse effects
  • Endothelial Cells / drug effects
  • Endothelial Cells / metabolism
  • Glomerular Basement Membrane / drug effects
  • Glomerular Basement Membrane / metabolism
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Myofibroblasts / drug effects
  • Myofibroblasts / metabolism
  • Podocytes / drug effects
  • Podocytes / metabolism
  • Proteinuria / drug therapy
  • Proteinuria / metabolism
  • Receptors, Retinoic Acid / agonists*
  • Thiazoles / pharmacology

Substances

  • 4-(4-(2-(n-butoxy)ethoxy)-5-methylthiazol-2-yl)-2-fluorobenzoic acid
  • Actins
  • Benzoates
  • Collagen Type IV
  • Receptors, Retinoic Acid
  • Thiazoles
  • retinoic acid receptor beta2, mouse