[Seven-Point Correction Approach for Spectrum Measurement of Light Source with a Narrow Bandwidth]

Guang Pu Xue Yu Guang Pu Fen Xi. 2016 Jun;36(6):1921-4.
[Article in Chinese]

Abstract

The finite bandwidth of spectroradiometers always causes significant errors when the measured light source has a narrow bandwidth compared to that of spectroradiometers. In order to solve this problem, an improved correction approach which is called seven-point correction approach is proposed. Firstly, the seven-point correction formula is obtained with Taylor’s series and related derivative formula. Secondly, the effect of seven-point formula is validated through a simulated spectrum with a sine function shape. Considering the sine function as true spectrum, we calculate the measured spectrum with the bandpass function of spectroradiometers. We also correct the measured spectrum with the seven-point formula. At last, we validate the seven-point formula experimentally with a LED lamp whose center wavelength is 365 nm. Using a double grating monochromator, we measure the irradiance of LED lamp when the bandwidth of spectroradiometer is 5 and 0.5 nm. We also obtain the corrected spectrum by applying seven-point formula to measured spectrum. The simulated results show that, the corrected value at the center wavelength could be above 99% of the true value. The experimental results show that, the corrected value at the center wavelength could reach above 95% of the true value. Above all, the proposed seven-point approach has an improved correction effect compared with three-point and five point approach. This correction approach could be widely applied in the field of spectrum measurement.