Novel Core-Shell Hybrid Nanosphere towards the Mechanical Enhancement and Fire Retardance of Polycarbonate

ACS Appl Mater Interfaces. 2018 Aug 22;10(33):28036-28050. doi: 10.1021/acsami.8b07629. Epub 2018 Aug 7.

Abstract

It is a huge challenge to achieve highly efficient fire retardance with no mechanical damage to polymers. In our current research, a novel core-shell titanium dioxide@diphenylphosphinic (TiO2@DPP) nanosphere was first synthesized through a hydrothermal reacting process, and applied in simultaneously enhancing the fire retardance and mechanical properties of polycarbonate (PC). The well-designed TiO2@DPP exhibited a significant effect on combustion performance and mechanical reinforcement of PC. At only 0.10 wt % of TiO2@DPP, PC/TiO2@DPP passed the UL-94 V-0 rating, and its oxygen index value rose to 29.3%. Moreover, the peak value of the heat release rate was remarkably decreased by 34.1% in the combustion test, accompanied by the formation of more compacted char layer and the release of more incombustible gas. Equally important another aspect is that the PC containing only 0.10 wt % of TiO2@DPP possessed higher elongation at break and higher tensile strength than pure PC, correspondingly increased by 27.7 and 14.7%. The analysis of the flame-retardant mechanism revealed that the improved fire retardance of PC is primarily ascribed to the barrier action of a cross-linking network containing phosphorus and titanium, the dilution of nonflammable gases such as H2O, and the quenching effect of free radicals which are from the phosphorous group in the gas phase. All these experimental results demonstrate that the core-shell hybrid TiO2@DPP may achieve a simultaneous significant improvement in fire retardance and mechanical properties of PC.

Keywords: diphenylphosphinic acid; flame retardance; hybrid nanosphere; mechanical properties; polycarbonate; titanium dioxide.