Starch degradation, abscisic acid and vesicular trafficking are important elements in callose priming by indole-3-carboxylic acid in response to Plectosphaerella cucumerina infection

Plant J. 2018 Nov;96(3):518-531. doi: 10.1111/tpj.14045. Epub 2018 Sep 5.

Abstract

A fast callose accumulation has been shown to mediate defence priming in certain plant-pathogen interactions, but the events upstream of callose assembly following chemical priming are poorly understood, mainly because those steps comprise sugar transfer to the infection site. β-Amino butyric acid (BABA)-induced resistance in Arabidopsis against Plectosphaerella cucumerina is known to be mediated by callose priming. Indole-3-carboxylic acid (ICOOH, also known as I3CA) mediates BABA-induced resistance in Arabidopsis against P. cucumerina. This indolic compound is found in a common fingerprint of primed metabolites following treatments with various priming stimuli. In the present study, we show that I3CA induces resistance in Arabidopsis against P. cucumerina and primes enhancement of callose accumulation. I3CA treatment increased abscisic acid (ABA) levels before infection with P. cucumerina. An intact ABA synthesis pathway is needed to activate a starch amylase (BAM1) to trigger augmented callose deposition against P. cucumerina during I3CA-IR. To verify the relevance of the BAM1 amylase in I3CA-IR, knockdown mutants and overexpressors of the BAM1 gene were tested. The mutant bam1 was impaired to express I3CA-IR, but complemented 35S::BAM1-YFP lines in the background of bam1 restored an intact I3CA-IR and callose priming. Therefore, a more active starch metabolism is a committed step for I3CA-IR, inducing callose priming in adult plants. Additionally, I3CA treatments induced expression of the ubiquitin ligase ATL31 and syntaxin SYP131, suggesting that vesicular trafficking is relevant for callose priming. As a final element in the callose priming, an intact Powdery Mildew resistant4 (PMR4) gene is also essential to fully express I3CA-IR.

Keywords: Plectosphaerella cucumerina; BAM1; callose accumulation; defence priming; indole-3-carboxylic acid.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Abscisic Acid / metabolism
  • Arabidopsis / enzymology
  • Arabidopsis / genetics
  • Arabidopsis / immunology*
  • Arabidopsis / microbiology
  • Arabidopsis Proteins / genetics
  • Arabidopsis Proteins / metabolism
  • Ascomycota / physiology*
  • Glucans / metabolism*
  • Glucosyltransferases / genetics
  • Glucosyltransferases / metabolism
  • Indoles / metabolism*
  • Plant Diseases / immunology*
  • Plant Diseases / microbiology
  • Plant Growth Regulators / metabolism*
  • Protein Serine-Threonine Kinases / genetics
  • Protein Serine-Threonine Kinases / metabolism
  • Qa-SNARE Proteins / genetics
  • Qa-SNARE Proteins / metabolism
  • Starch / metabolism*
  • Ubiquitin-Protein Ligases / genetics
  • Ubiquitin-Protein Ligases / metabolism

Substances

  • Arabidopsis Proteins
  • Glucans
  • Indoles
  • Plant Growth Regulators
  • Qa-SNARE Proteins
  • SYP131 protein, Arabidopsis
  • indole-3-carboxylic acid
  • Abscisic Acid
  • Starch
  • callose
  • ATL31 protein, Arabidopsis
  • Ubiquitin-Protein Ligases
  • Glucosyltransferases
  • PMR4 protein, Arabidopsis
  • BAM1 protein, Arabidopsis
  • Protein Serine-Threonine Kinases