Fibroblast growth factor 21 induces lipolysis more efficiently than it suppresses lipogenesis in goat adipocytes

Cytotechnology. 2018 Oct;70(5):1423-1433. doi: 10.1007/s10616-018-0237-1. Epub 2018 Jul 26.

Abstract

Fibroblast growth factor 21 (FGF21) potentially regulates glucose and lipid metabolism in energy homeostasis. We investigated dynamic changes in goat adipocytes treated with 75 nM FGF21 for 24, 36 and 48 h. Compared to controls, FGF21-treated adipocytes displayed smaller lipid droplets and altered levels of the mRNA transcripts encoding several lipolysis genes. The genes with elevated mRNA levels included: ATGL, HSL, CPT-1, and UCP1, and this was observed mainly at 24 and 36 h (P < 0.05). Some gene expression was attenuated including lipogenesis genes, such as SREBP1, PPARγ, C/EBPα, and ACC. This attenuation was observed mainly at 24 h (P < 0.05). Among the genes that were significantly induced or inhibited, ATGL, PGC1α, and C/EBPα were observed a significant effect at 48 h (P < 0.05). In addition, FGF21 treatment greatly increased number of mitochondria and the expression of genes implicated in mitochondrial biogenesis, such as PGC1α, NRF1, and TFAM. These results suggest that FGF21 treatment induced lipolysis more effectively than it suppressed lipogenesis in goat adipocytes, and that mitochondrial biogenesis plays an important role in these cells.

Keywords: Adipocyte; FGF21; Lipogenesis; Lipolysis; Mitochondria.