Field Applications of Ultra High Frequency Techniques for Defect Detection in GIS

Sensors (Basel). 2018 Jul 26;18(8):2425. doi: 10.3390/s18082425.

Abstract

The reliable and stable operation of power apparatus is important for the development of GIS. It is important to utilize condition monitoring technologies and anticipate possible failures in advance. Many papers have been published about the partial discharge detection with UHF or X-ray in laboratory, but seldom in field application. Thus, many engineers at project sites are not familiar with the current professional diagnosis techniques. Recently, during the GIS routine data analysis obtained by partial discharge online monitoring system, it was found that the UHF monitoring signals' developing trend of the 220 kV GIS No. 2 high-voltage side of transformer in phase C at an actual station was abnormal and needed further detection. In order to precisely investigate the problem and then guide the operation and maintenance activities, a series of professional diagnoses were conducted. Three new types of partial discharge detection and positioning methods were applied for accuracy, including UHF partial discharge detection based on multi-stage amplified signal demodulation and multiple weighted averages processing; the partial discharge detection based on the signal radiation hole of insulation disk at the ground connection; and the positioning method based on UHF-SHF. After a series of troubleshooting works, the partial discharge defects have been diagnosed, and the case can be referred in the field monitoring of GIS.

Keywords: UHF; antennas array; condition monitoring; location; partial discharge; sensors.