Microstructure and Doping/Temperature-Dependent Photoluminescence of ZnO Nanospears Array Prepared by Hydrothermal Method

Nanoscale Res Lett. 2018 Jul 25;13(1):223. doi: 10.1186/s11671-018-2622-2.

Abstract

Al-doped ZnO nanospears were prepared by a hydrothermal method. The crystalline structure and photoluminescence properties of ZnO nanospears were characterized for investigating the effect of Al doping on the properties of ZnO nanospears. ZnO nanospears grow preferentially along the c-axis and have a fine tip. Al doping reduces the length of ZnO nanospears. In room temperature, photoluminescence spectra of Al-doped ZnO nanospears, a near band edge emission (~3.16 eV), and a violet emission (~2.91 eV) exhibit a strong doping-dependent characteristic and a temperature-independent characteristic, while deep level emission peak shows a temperature-dependent characteristic. In variable temperature, photoluminescence spectra near band edge emission (~3.31 eV) and its fine structures were observed when the measurement temperature is less than 57 K, and it shows an obvious temperature-dependent characteristic. The thermal quenching of this near band edge emission should be attributed to exciton scattering by defects and the presence of a high concentration of defects in Al-doped ZnO nanospears.

Keywords: Al doping; Doping/temperature dependence; Photoluminescence; ZnO.