Large-scale transfer-free growth of thin graphite films at low temperature for solid diffusion barriers

Nanoscale. 2018 Aug 9;10(31):14819-14823. doi: 10.1039/c8nr03842b.

Abstract

Amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs) have been under intense investigation as one of the promising candidates for active matrix flat-panel displays. However, solid diffusion of a-IGZO to other layers during TFT device fabrication highly degrades their electrical and optical properties. It is expected that the diffusion-impenetrable properties of graphitic materials can be utilized as diffusion barriers. A conventional transfer method and direct growth on TFTs with high temperature are limited due to wet transfer conditions and low Tg (∼540 °C) of the glass substrates, respectively. Here we report the large-scale transfer-free growth of thin graphite films at low temperature (∼350 °C) for solid diffusion barriers in the a-IGZO TFTs using plasma enhanced chemical vapor deposition (PECVD), which can be widely used to protect solid-diffusion for sustainable and scalable future industrial technology.