Comprehensive Study on Reactions of Group 13 Diyls with Tetraorganodipentelanes

Inorg Chem. 2018 Aug 6;57(15):9495-9503. doi: 10.1021/acs.inorgchem.8b01489. Epub 2018 Jul 24.

Abstract

L1Ga {L1 = HC[C(Me)N(2,6- iPr2C6H3)]2} reversibly reacts with E2Ph4 (E = Sb, Bi) in a temperature-dependent equilibrium reaction with insertion into the E-E bond and formation of L1Ga(EPh2)2 (E = Sb 1, Bi 2). Analogous findings were observed in the reactions of L2Ga {L2 = (C6H11)2NC[N(2,6- iPr2C6H3)]2} with E2R4 (R = Ph, Et), yielding L2Ga(EPh2)2 (E = Sb 3, Bi 4) and L2Ga(EEt2)2 (E = Sb 5, Bi 6). 1-3 and 5 were isolated by fractional crystallization at low temperature, whereas 4 and 6 could not be isolated in their pure form even at low temperature. In contrast, reactions of [Cp*Al]4 (Cp* = C5Me5) with Sb2R4 (R = Ph, Et) and Bi2Et4 did not proceed with insertion into the E-E bonds but with formation of (Cp*Al)3E2 (E = Sb, 7; Bi, 8), whereas the reaction with Bi2Ph4 yielded metallic bismuth. 8 was also formed in the reaction of [Cp*Al]4 and BiEt3 at ambient temperature, whereas the analogous reaction of [Cp*Al]4 with SbEt3 did not yield 7 even under drastic reaction conditions (120 °C, 3 days). In contrast, Cp*Ga and Sb2R4 (R = Ph, Et) were found to react only at elevated temperature (120 °C) with formation of antimony metal.