A Colorimetric Probe Based on Functionalized Gold Nanorods for Sensitive and Selective Detection of As(III) Ions

Sensors (Basel). 2018 Jul 21;18(7):2372. doi: 10.3390/s18072372.

Abstract

A colorimetric probe for determination of As(III) ions in aqueous solutions on basis of localized surface plasmon resonance (LSPR) was synthesized. The dithiothreitol molecules with two end thiols covalently combined with Au Nanorods (AuNRs) with an aspect ratio of 2.9 by Au-S bond to form dithiothreitol coated Au Nanorods (DTT-AuNRs), acting as colorimetric probe for the determination of As(III) ions. With the adding of As(III) ions, the AuNRs will be aggregated and leading the longitudinal SPR absorption band of DTT-AuNRs decrease due to the As(III) ions can bind with three DTT molecules through an As-S linkage. The potential factors affect the response of DTT-AuNRs to As(III) ions including the concentration of DTT, pH values of DTT-AuNRs, reaction time and NaCl concentration were optimized. Under optimum assay conditions, the DTT-AuNRs colorimetric probe has high sensitivity towards As(III) ions with low detection limit of 38 nM by rules of 3σ/k and excellent linear range of 0.13⁻10.01 μM. The developed colorimetric probe shows high selectivity for As(III) ions sensing and has applied to determine of As(III) in environmental water samples with quantitative spike-recoveries range from 95.2% to 100.4% with low relative standard deviation of less than 4.4% (n = 3).

Keywords: arsenic ions; colorimetric probe; dithiothreitol; gold nanorods.