Assessing the Viability of a Synthetic Bacterial Consortium on the In Vitro Gut Host-microbe Interface

J Vis Exp. 2018 Jul 4:(137):57699. doi: 10.3791/57699.

Abstract

The interplay between host and microbiota has been long recognized and extensively described. The mouth is similar to other sections of the gastrointestinal tract, as resident microbiota occurs and prevents colonisation by exogenous bacteria. Indeed, more than 600 species of bacteria are found in the oral cavity, and a single individual may carry around 100 different at any time. Oral bacteria possess the ability to adhere to the various niches in the oral ecosystem, thus becoming integrated within the resident microbial communities, and favouring growth and survival. However, the flow of bacteria into the gut during swallowing has been proposed to disturb the balance of the gut microbiota. In fact, oral administration of P. gingivalis shifted bacterial composition in the ileal microflora. We used a synthetic community as a simplified representation of the natural oral ecosystem, to elucidate the survival and viability of oral bacteria subjected to simulated gastrointestinal transit conditions. Fourteen species were selected, subjected to in vitro salivary, gastric, and intestinal digestion processes, and presented to a multicompartment cell model containing Caco-2 and HT29-MTX cells to simulate the gut mucosal epithelium. This model served to unravel the impact of swallowed bacteria on cells involved in the enterohepatic circulation. Using synthetic communities allows for controllability and reproducibility. Thus, this methodology can be adapted to assess pathogen viability and subsequent inflammation-associated changes, colonization capacity of probiotic mixtures, and ultimately, potential bacterial impact on the presystemic circulation.

Publication types

  • Research Support, Non-U.S. Gov't
  • Video-Audio Media

MeSH terms

  • Gastrointestinal Microbiome / physiology*
  • Humans
  • Intestines / microbiology*