Ag Nanoparticles Connected to the Surface of TiO2 Electrostatically for Antibacterial Photoinactivation Studies

Photochem Photobiol. 2018 Nov;94(6):1249-1262. doi: 10.1111/php.12983. Epub 2018 Aug 27.

Abstract

Supported silver nanoparticles (Ag NPs) were prepared by chemical reduction method with a sol-gel method. The structure, morphology, and interconnectivity of Ag/TiO2 nanocomposites (NCs) were analyzed using different instrumental techniques. Transmission electron microscopy reveals the Ag NPs have uniformly distributed and anchored on the surface of TiO2 . The reduction in electron-hole recombination was measured by Photoluminescence measurements lead, to an increased photocatalytic inactivation of bacteria. Increase in the amount of Ag NPs on TiO2 resulted in a slight decrease in optical band gap energy of TiO2 . The effect of Ag NPs content on the photocatalytic properties of TiO2 for inhibition of bacteria in visible light irradiation was studied. Furthermore, the antibacterial activity of Ag/TiO2 NCs in the presence of UVA light was studied against gram-positive Staphylococcus aureus and gram-negative Escherichia coli bacterial strain by plate count method. Lower values of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the catalysts were observed and used to determine the tolerance factor which is shown bactericidal nature of the NCs. Subsequently, time-killing assay of Ag/TiO2 NCs was shown dynamics of antimicrobial activity. These multifold antibacterial studies exhibited potent antibacterial nature of the NCs and employed in the wider range of biomedical fields.

Publication types

  • Research Support, Non-U.S. Gov't