Transcriptome Analysis of CHO Cell Size Increase During a Fed-Batch Process

Biotechnol J. 2019 Mar;14(3):e1800156. doi: 10.1002/biot.201800156. Epub 2018 Jul 30.

Abstract

In a Chinese Hamster Ovary (CHO) cell fed-batch process, arrest of cell proliferation and an almost threefold increase in cell size occurred, which is associated with an increase in cell-specific productivity. In this study, transcriptome analysis is performed to identify the molecular mechanisms associated with this. Cell cycle analysis reveals that the cells are arrested mainly in the G0 /G1 phase. The cell cycle arrest is associated with significant up-regulation of cyclin-dependent kinases inhibitors (CDKNs) and down-regulation of cyclin-dependent kinases (CDKs) and cyclins. During the cell size increase phase, the gene expression of the upstream pathways of mechanistic target of rapamycin (mTOR), which is related to the extracellular growth factor, cytokine, and amino acid conditions, shows a strongly synchronized pattern to promote the mTOR activity. The downstream genes of mTOR also show a synchronized pattern to stimulate protein translation and lipid synthesis. The results demonstrate that cell cycle inhibition and stimulated mTOR activity at the transcriptome level are related to CHO cell size increase. The cell size increase is related to the extracellular nutrient conditions through a number of cascade pathways, indicating that by rational design of media and feeds, CHO cell size can be manipulated during culture processes, which may further improve cell growth and specific productivity.

Keywords: CHO cell culture; cell cycle; cell size increase; mAb production; mTOR; transcriptome analysis.

MeSH terms

  • Animals
  • CHO Cells
  • Cell Culture Techniques / methods
  • Cell Cycle Checkpoints / genetics
  • Cell Proliferation / genetics
  • Cricetulus
  • Cyclin-Dependent Kinases / genetics
  • Cyclins / genetics
  • G1 Phase / genetics
  • Gene Expression / genetics
  • Gene Expression Profiling / methods
  • Resting Phase, Cell Cycle / genetics
  • TOR Serine-Threonine Kinases / genetics
  • Transcription, Genetic / genetics
  • Transcriptome / genetics*
  • Up-Regulation / genetics

Substances

  • Cyclins
  • TOR Serine-Threonine Kinases
  • Cyclin-Dependent Kinases