Hierarchically Porous Fe2 CoSe4 Binary-Metal Selenide for Extraordinary Rate Performance and Durable Anode of Sodium-Ion Batteries

Adv Mater. 2018 Jul 18:e1802745. doi: 10.1002/adma.201802745. Online ahead of print.

Abstract

Owing to high energy capacities, transition metal chalcogenides have drawn significant research attention as the promising electrode materials for sodium-ion batteries (SIBs). However, limited cycle life and inferior rate capabilities still hinder their practical application. Improvement of the intrinsic conductivity by smart choice of elemental combination along with carbon coupling of the nanostructures may result in excellence of rate capability and prolonged cycling stability. Herein, a hierarchically porous binary transition metal selenide (Fe2 CoSe4 , termed as FCSe) nanomaterial with improved intrinsic conductivity was prepared through an exclusive methodology. The hierarchically porous structure, intimate nanoparticle-carbon matrix contact, and better intrinsic conductivity result in extraordinary electrochemical performance through their synergistic effect. The synthesized FCSe exhibits excellent rate capability (816.3 mA h g-1 at 0.5 A g-1 and 400.2 mA h g-1 at 32 A g-1 ), extended cycle life (350 mA h g-1 even after 5000 cycles at 4 A g-1 ), and adequately high energy capacity (614.5 mA h g-1 at 1 A g-1 after 100 cycles) as anode material for SIBs. When further combined with lab-made Na3 V2 (PO4 )3 /C cathode in Na-ion full cells, FCSe presents reasonably high and stable specific capacity.

Keywords: Fe2CoSe4; binary metal selenides; hierarchically porous structures; sodium-ion batteries; transition metal chalcogenides.