Microstructure and Corrosion Behavior of Composite Coating on Pure Mg Acquired by Sliding Friction Treatment and Micro-Arc Oxidation

Materials (Basel). 2018 Jul 18;11(7):1232. doi: 10.3390/ma11071232.

Abstract

For the purpose of detecting the influence of grain structure of a Mg matrix on the microstructure and corrosion resistance of micro-arc oxidation (MAO) coating, prior to MAO processing, sliding friction treatment (SFT) was adopted to generate a fine-grained (FG) layer on coarse-grained (CG) pure Mg surface. It showed that the FG layer had superior corrosion resistance, as compared to the CG matrix, owing to the grain refinement; furthermore, it successfully survived after MAO treatment. Thus, an excellent FG-MAO coating was gained by combining SFT and MAO. The surface morphology and element composition of FG-MAO and CG-MAO samples did not show significant changes. However, the FG layer favorably facilitated the formation of an excellent MAO coating, which possessed a superior bonding property and greater thickness. Consequently, the modified FG-MAO sample possessed enhanced corrosion resistance, since a lower hydrogen evolution rate, a larger impedance modulus and a lower corrosion current were observed on the FG-MAO sample.

Keywords: corrosion; fine grain; micro-arc oxidation; pure Mg; sliding friction treatment.